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The two big scenarios
Unified schemes Evolutionary sequence
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A (brief) history of obscured AGN

Rowan-Robinson (1977) first unified scheme: “The distinction between type 1 and
type 2 is caused by dust obscuration in the latter”.

Antonucci, Miller + (mid 80’) spectropolarimetry of Seyfert and radio galaxies:
geometrical unified schemes.

Lawrence & Elvis (1982) Einstein. A first complication for unified schemes:
obscuration is a function of AGN luminosity.

Sanders + (end 80’) first ideas about an evolutionary sequence: “ULIRG: the
transition from galaxy to quasar?”. First hints of a connection between galaxy activity
and galaxy interaction (environment/nurture vs. nature).
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Koyama, Awaki + (end 80’) Ginga. X-ray obscuration is common in Sy2 galaxies.
Setti & Woltjer (1989) Use above results to explain CXB in terms of obscured AGN.
Maiolino & Rieke (1995) Sy2/Sy1=4.



A (brief) history of obscured AGN

" Comastri + (1995) Use unified schemes §
+ Sy2/Sy1=4 + ROSAT LF to make the
first AGN synthesis models of the CXB

Matt, FF + (1996) ASCA. Reflection
spectrum from Circinus galaxy, l.e.
Compton thick absorber.
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" Malkan + (1998) Dust lanes very
common in galaxies. Matt (2000) these
can be likely sites of obscuration.
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A (brief) history of obscured AGN

" Risaliti, Maiolino (1999) BSAX. NH distribution of Sv2
including Compton thick objects.

" Smail, Chapman + (end 90’) discovery and
identification of submm galaxies SMG: Dust
enshrouded star-forming galaxies at z~2.

" Ferrarese+ Magorrian+ (end 90’) BH in local bulges,
tight correlations MBH-Bulge properties

" Silk & Rees (1998), Fabian (1999) first ideas/models e ey \
for the formation of bulge+BH. Key ingredient is an Log Ny (cm2)
AGN wind, which “terminates the growth of both BH ‘
and galaxy”. “The BH obscured growth phase is a
distinct phase (from “revived” Sy-like galaxies in the

local Universe), not yet observed”.

" FF+Akiyama+ (end 90') BSAX, ASCA. First
identifications of large fraction of obscured AGN at
z=0.2-1 in hard X-ray surveys.

" Giacconi+ Hasinger+ Brandt+ (2000-2003) Chandra/

XMM deep surveys. Large population of obscured
AGN up to z=2-3.

Number of sources



A (brief) hlstory of obscured AGN

" Ueda+, FF+, Cowie+, LaFranca+
Hasinger+ (2003 2005) AGN X-ray
“Downsizing” (Franceschini+ 1999).
First luminosity functions of
obscured AGN. Obscuration is a

function of luminosity (and redshift).

" Alexander+ (2005) Most radio
identified SMG host X-ray and
optically obscured AGN. Their
bolometric luminosity is dominated
by star-formation. First strong
observational link between AGN
obscuration and starformation.
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A (brief) history of obscured AGN

" Page+ (2000-2005) submm
observations of AGN. Obscured AGN
are systematically brighter than
coeval unobscured AGN. “The
evolutionary sequence of AGN and
galaxy formation revealed”.

= Granato+, Menci+ Di Matteo+
(2004-2006) Physical models for the
coevolution of AGNs and their host
galaxies.

" Many (2004- ) Spitzer. Selection and 2
identification of large samples of .
highly obscured, Compton thick AGN
using infrared photometry and
infrared spectroscopy.

" Ueda+, de Rosa+ (2007,2008)
|dentification and spectroscopy of
Swift BAT and INTEGRAL highly
obscured AGN.
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A semi-analytic model for the
AGN-galaxy co-evolution

Three main ingredients:

Hierarchical merging of DM _
haloes and of substructures: ¢

higher density perturbation _ : “\ /
collapse first, larger scale ]
perturbation collapse later. - Fl g
Galaxy interactions to fuel B . & ‘i

both Star-formationand AGN =, /| / 7/} /
(Cavaliere & Vittorini 2000) ™ =Agswe\Ly -

A physical model for AGN _
feedback (Cavaliere, Lapi, @
Menci 2005)




Galaxy encounters
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2 | "“tidal forces during encounters

% cause otherwise stable disks to
: develop bars, and the gas in such
‘_ barred disks, subjected o strong
N gravitational torques, flows toward

the central regions "

Mihos & Hernquist 1996
See also Noguchi 1987
Barnes & Hernquist 1991
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Part of the available galactic cold gas is detabilized and
funnelled toward the centre
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the central BH circumnuclear starbursts
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The rapid decrease at z<2.5 is
due to 3 concurring factors

The decrease with time of the
merging rate of galaxies

The decrease with time of the
galactic cold gas left available for

accretion B E | I"""""""_:
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The decrease with time of the —6 F il E
encounter rate stimulating the o E /‘r))‘! — -
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AGN Feedback
& AGN accretion mode

" Quasar mode = Radio mode
" Major mergers " Low accretion-rate systems
] Minor mergers tend tO be radiatively

inefficient and jet-dominated

" Feedback from low luminosity
AGN dominated by kinetic
energy

" Low level activity can be
~continuous

Croton 2006

" Galaxy encounters

" Activity periods are strong, short
and recurrent

" AGN density decrease at z<2 is due to:
" decrease with time of galaxy
merging rate
" Decrease with time of encounters
rate
" Decrease with time of galactic cold
gas left available for accretion

" Feedback is driven by AGN radiation
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AGN feedback & AGN obscuration

Lapi Cavaliere & Menci 2005 a way to solve the problem

of the transport of energy: central highly supersonic outflows compress the
gas into a blast wave terminated by a shock front, which moves outwards at
supersonic speed and sweeps out the surrounding medium

: Measure of AGN obscuration can be an
Ry () O Mt DE—ﬁ : observational constraint of feedback
models “in action”
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Fraction of obscured AGN

Powerful AGN clean their Menci, FF et al. 2008
sight-lines more rapidly than
low luminosity AGN, and
therefore the fraction of
obscured AGN can be
viewed as a
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Fraction of obscured AGN

4 Consistent with: Previous “geometrical” explanations:
- La Franca+ 2005, Hasinger e« The receding torus (Lawrence 1991)

2008 (X-ray selected AGN) . : 4
0 Maiolines 200 A IiNESE BH potential (Lamastra+ 2006)

dependent covering factor ) _
in unobscured AGN Menci+ 08 SAM already includes

orientation effects. BH potential effect
to be included soon
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SAM Prediction:

Flat number density of AGN with z.
Lots of LX=43-45 AGN at z>3. Are they Compton thick?

l ' /COSMOS, Brusa+08, arXiv:08E9.2513
e otal
CohoEn, et _Optically bright
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Redshift



" Other strong evidences for

" Complete SMBH census
needed, including CT AGN
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Completing the census of SMBH
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" very efficient in selecting
unobscured and moderately
obscured AGN

" Miss most highly obscured AGN
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" AGNSs highly obscured at optical and ®oor won 1o 10t
X-ray wavelengths shine in the MIR ‘
thanks to the reprocessing of the
nuclear radiation by dust

o.
Circinue galary BeppoSAX MECH,FD3

" Select unobscured and moderately

obscured AGN in X-rays . | _ ﬁ
" Add highly obscured AGNs selected | -
in the MIR P 1
" Simple approach: Differencés are | - =T \

emphasized in a wide-band SED
analysis




IR selected CT AGN

Efficient strategy: target sources with AGN luminosity in the
MIR but faint (and red) optical counterparts.
First used by Martinez-Sansigre (2005)




COSMOS MIR AGN
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CT AGN volume density
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. density IR-CT AGN ~ 45% density X-ray selected AGN, ~90% of
unobscured or moderately obscured AGN

. density IR-CT AGN ~ 100% density X-ray selected AGN, ~200% of
unobscured or moderately obscured AGN
The correlation between the fraction of obscured AGN and their

luminosity holds and itis in place by z~2



AGN fraction
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Chandra survey of the Bootes field (5ks effective exposure)
Brand et al. 2006 assume that AGN populate the peak at F24um/F8um~0

only. They miss a large population of obscured AGN, not detected at the
bright limits of their survey.




AGN obscuration, AGN
feedback and star-formation

" CT absorbers can be naturally included in the Menci et al. feedback
scenario as an extension toward smaller distances to the nucleus where
gas density can be high.

" |f the fundamental correlation between the fraction of
obscured AGN and L is due to different timescales
over which nuclear feedback is at work

"l moderately obscured unobscured



AGN obscuration, AGN
feedback and star-formation

Most SMG host obscured AGN (Alexander+ 2005)

X-ray selected, type-2 QSO have higher sub-mm detection rate than unobscured
QSO (Page+ 2004, Stevens+ 2004)

Dust obscured star-formation revealed by Spitzer IRS in type 2 QSOs
Martlnez-SanS|gre+ (2008) Lacy+ (2007)

he

HELLAS2XMM QSO2, Vignali+ 08
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AGN feedback & galaxy colors

Menci et al. 2006

Ma AGN Feedback ACN Feedback
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AGN host galaxies
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" Most X-ray selected (and IR selected), obscured AGN live in

massive star-forming galaxies. ~1/3 live in galaxies with

SFR<10M,,  /yr. Brusa, FF et al. (2008)
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What is left?

" The “smocking gun” of CT AGN is the X-ray spectrum.

folded spectru

Circinue gelaxy BeppoSai MECH FDS

" Today we can get: |
= X-ray spectra of CT Sy2 = | F
galaxies in the local universe BE by At UL
(and little more at higher z). 3 |
= X-ray colors of CT AGN up to z=2 : e

" Spitzer IRS spectra of Sy2 and of the most luminous type 2 QSO at
z~2 (but we cannot tell if they are truly CT, only X-rays can tell)

" We badly need X-ray spectroscopy of CT AGN at
z>0.5!!
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Simbol-X

o | CDFS 1 Msec simulations 10-40 keV

T T - Chandra sources (red contours)

. | -] -IR selected CT AGN at z=0.5-2 (blue circles)
assuming NH=10%* cm? and a reasonable IR/X-ray
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I sx Tfllsec 10% keV‘

" Spectra of the brightest at z=2-4

JWST will certainly get spectra of
obscured AGN at any z but X-ray are
mandatory to identify them as CT, and

therefore to count them to complete the g |

AGN census over the cosmic epoch.
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